science

K-EmoPhone: A Mobile and Wearable Dataset with In-Situ Emotion … – Nature.com


  • Do, T. M. T., Blom, J. & Gatica-Perez, D. Smartphone usage in the wild: a large-scale analysis of applications and context. In Proceedings of the 13th International Conference on Multimodal Interfaces, ICMI’ 11, 353–360, https://doi.org/10.1145/2070481.2070550 (Association for Computing Machinery, 2011).

  • Chhabra, R., Krishna, C. R. & Verma, S. Smartphone based context-aware driver behavior classification using dynamic bayesian network. J. Intell. & Fuzzy Syst. 36, 4399–4412, https://doi.org/10.3233/JIFS-169995 (2019).

    Article 

    Google Scholar
     

  • Kang, S., Kim, A., Lee, J., Shin, I. & Lee, U. Understanding customers’ interests in the wild. In Proceedings of the 2018 ACM International Joint Conference and 2018 International Symposium on Pervasive and Ubiquitous Computing and Wearable Computers, UbiComp’ 18, 90–93, https://doi.org/10.1145/3267305.3267625 (Association for Computing Machinery, 2018).

  • Cha, N. et al. Hello there! is now a good time to talk? opportune moments for proactive interactions with smart speakers. Proc. ACM on Interactive, Mobile, Wearable Ubiquitous Technol. 4, https://doi.org/10.1145/3411810 (2020).

  • Kim, A., Choi, W., Park, J., Kim, K. & Lee, U. Interrupting drivers for interactions: predicting opportune moments for in-vehicle proactive auditory-verbal tasks. Proc. ACM on Interactive, Mobile, Wearable Ubiquitous Technol. 2, https://doi.org/10.1145/3287053 (2018).

  • Sağbaş, E. A., Korukoglu, S. & Balli, S. Stress detection via keyboard typing behaviors by using smartphone sensors and machine learning techniques. J. Med. Syst. 44, 1–12, https://doi.org/10.1007/s10916-020-1530-z (2020).

    Article 

    Google Scholar
     

  • Zhang, X., Li, W., Chen, X. & Lu, S. MoodExplorer: towards compound emotion detection via smartphone sensing. Proc. ACM on Interactive, Mobile, Wearable Ubiquitous Technol. 1, https://doi.org/10.1145/3161414 (2018).

  • Canzian, L. &Musolesi,M. Trajectories of depression: unobtrusive monitoring of depressive states by means of smartphone mobility traces analysis. In Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, UbiComp’ 15, 1293–1304, https://doi.org/10.1145/2750858.2805845 (Association for Computing Machinery, 2015).

  • Harari, G. M. et al. Using smartphones to collect behavioral data in psychological science: opportunities, practical considerations, and challenges. Perspectives on Psychol. Sci. 11, 838–854, https://doi.org/10.1177/1745691616650285 (2016).

    Article 

    Google Scholar
     

  • Burkhardt, F. et al. A database of german emotional speech. In Interspeech 5, 1517–1520, https://doi.org/10.21437/INTERSPEECH.2005-446 (2005).

    Article 

    Google Scholar
     

  • Haq, S., Jackson, P. J. B. & Edge, J. D. Audio-visual feature selection and reduction for emotion classification. Proceedings of International Conference on Auditory-Visual Speech Processing, AVSP’ 08, 185–190 (2008).


    Google Scholar
     

  • Soleymani, M., Lichtenauer, J., Pun, T. & Pantic, M. A multimodal database for affect recognition and implicit tagging. IEEE Transactions on Affect. Comput. 3, 42–55, https://doi.org/10.1109/T-AFFC.2011.25 (2012).

    Article 

    Google Scholar
     

  • Koelstra, S. et al. DEAP: a database for emotion analysis using physiological signals. IEEE Transactions on Affect. Comput. 3, 18–31, https://doi.org/10.1109/T-AFFC.2011.15 (2012).

    Article 

    Google Scholar
     

  • Zheng, W.-L. & Lu, B.-L. Investigating critical frequency bands and channels for eeg-based emotion recognition with deep neural networks. IEEE Transactions on Auton. Mental Dev. 7, 162–175, https://doi.org/10.1109/TAMD.2015.2431497 (2015).

    Article 

    Google Scholar
     

  • Abadi, M. K. et al. DECAF: meg-based multimodal database for decoding affective physiological responses. IEEE Transactions on Affect. Comput. 6, 209–222, https://doi.org/10.1109/TAFFC.2015.2392932 (2015).

    Article 

    Google Scholar
     

  • Katsigiannis, S. & Ramzan, N. DREAMER: a database for emotion recognition through eeg and ecg signals from wireless low-cost off-the-shelf devices. IEEE J. Biomed. Heal. Informatics 22, 98–107, https://doi.org/10.1109/JBHI.2017.2688239 (2018).

    Article 

    Google Scholar
     

  • Schmidt, P., Reiss, A., Duerichen, R., Marberger, C. & Van Laerhoven, K. Introducing WESAD, a multimodal dataset for wearable stress and affect detection. In Proceedings of the 20th ACM International Conference on Multimodal Interaction, ICMI’ 18, 400–408, https://doi.org/10.1145/3242969.3242985 (Association for Computing Machinery, 2018).

  • Zheng, W.-L., Liu, W., Lu, Y., Lu, B.-L. & Cichocki, A. Emotionmeter: a multimodal framework for recognizing human emotions. IEEE Transactions on Cybern. 49, 1110–1122, https://doi.org/10.1109/TCYB.2018.2797176 (2019).

    Article 

    Google Scholar
     

  • Li, T.-H., Liu, W., Zheng, W.-L. & Lu, B.-L. Classification of five emotions from eeg and eye movement signals: discrimination ability and stability over time. In 2019 9th International IEEE/EMBS Conference on Neural Engineering (NER), 607–610, https://doi.org/10.1109/NER.2019.8716943 (2019).

  • Miranda-Correa, J. A., Abadi, M. K., Sebe, N. & Patras, I. AMIGOS: a dataset for affect, personality and mood research on individuals and groups. IEEE Transactions on Affect. Comput. 12, 479–493, https://doi.org/10.1109/TAFFC.2018.2884461 (2021).

    Article 

    Google Scholar
     

  • Hovsepian, K. et al. cStress: towards a gold standard for continuous stress assessment in the mobile environment. In Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, UbiComp’ 15, 493–504, https://doi.org/10.1145/2750858.2807526 (Association for Computing Machinery, 2015).

  • King, Z. D. et al. Micro-Stress EMA: a passive sensing framework for detecting in-the-wild stress in pregnant mothers. Proc. ACM on Interactive, Mobile, Wearable Ubiquitous Technol. 3, https://doi.org/10.1145/3351249 (2019).

    Read More   Whale sharks ‘exhibit disturbed behaviour in presence of tourist swimmers’
  • Park, C. Y. et al. K-EmoCon, a multimodal sensor dataset for continuous emotion recognition in naturalistic conversations. Sci. Data 7, 1–16, https://doi.org/10.1038/s41597-020-00630-y (2020).

    Article 
    CAS 

    Google Scholar
     

  • Hektner, J. M., Schmidt, J. A. & Csikszentmihalyi, M. Experience sampling method: measuring the quality of everyday life (Sage Publications, Inc, 2006).

  • Wang, R. et al. StudentLife: assessing mental health, academic performance and behavioral trends of college students using smartphones. In Proceedings of the 2014 ACM International Joint Conference on Pervasive and Ubiquitous Computing, UbiComp’ 14, 3–14, https://doi.org/10.1145/2632048.2632054 (Association for Computing Machinery, 2014).

  • Mattingly, S. M. et al. The Tesserae project: large-scale, longitudinal, in situ, multimodal sensing of information workers. In Extended Abstracts of the 2019 CHI Conference on Human Factors in Computing Systems, CHI EA’ 19, 1–8, https://doi.org/10.1145/3290607.3299041 (Association for Computing Machinery, 2019).

  • John, O. P., Donahue, E. M. & Kentle, R. L. Big five inventory. J. Pers. Soc. Psychol. https://doi.org/10.1037/t07550-000 (1991).

    Article 
    PubMed 

    Google Scholar
     

  • Cobb-Clark, D. A. & Schurer, S. The stability of big-five personality traits. Econ. Lett. 115, 11–15, https://doi.org/10.1016/j.econlet.2011.11.015 (2012).

    Article 

    Google Scholar
     

  • Kim, J.-H., Kim, B.-H. & Ha, M.-S. Validation of a korean version of the big five inventory. J. Hum. Underst. Couns. 32, 47–65, https://kiss.kstudy.com/Detail/Ar?key=2980444 (2011).


    Google Scholar
     

  • Scollon, C., Kim-Prieto, C. & Diener, E. Experience sampling: promises and pitfalls, strengths and weaknesses. J. Happiness Stud. 39, 157–180, https://doi.org/10.1007/978-90-481-2354-4_8 (2009).

    Article 

    Google Scholar
     

  • Eisele, G., Vachon, H., Myin-Germeys, I. & Viechtbauer, W. Reported affect changes as a function of response delay: findings from a pooled dataset of nine experience sampling studies. Front. Psychol. 12, https://doi.org/10.3389/fpsyg.2021.580684 (2021).

  • Watson, D. & Clark, L. A. The PANAS-x: manual for the positive and negative affect schedule – expanded form. Tech. Rep., The University of Iowa. https://doi.org/10.17077/48vt-m4t2 (1994).

  • Russell, J. A. A circumplex model of affect. J. personality social psychology 39, 1161–1178, https://doi.org/10.1037/h0077714 (1980).

    Article 

    Google Scholar
     

  • LiKamWa, R., Liu, Y., Lane, N. D. & Zhong, L. MoodScope: building a mood sensor from smartphone usage patterns. In Proceeding of the 11th annual international conference on Mobile systems, applications, and services, MobiSys’ 13, 389–402, https://doi.org/10.1145/2462456.2464449 (Association for Computing Machinery, 2013).

  • Mehrotra, A., Tsapeli, F., Hendley, R. & Musolesi, M. MyTraces: investigating correlation and causation between users’ emotional states and mobile phone interaction. Proc. ACM on Interactive, Mobile, Wearable Ubiquitous Technol. 1, https://doi.org/10.1145/3130948 (2017).

  • Cohen, S. Perceived stress in a probability sample of the united states. The social psychology health 31–67 (1988).

  • Schmidt, P., Durichen, R., Reiss, A., Van Laerhoven, K. & Plotz, T. Multi-target affect detection in the wild: an exploratory study. In Proceedings of the 23rd International Symposium on Wearable Computers, ISWC’ 19, 211–219, https://doi.org/10.1145/3341163.3347741 (Association for Computing Machinery, 2019).

  • Mark, G., Iqbal, S., Czerwinski, M. & Johns, P. Focused, aroused, but so distractible: temporal perspectives on multitasking and communications. In Proceedings of the 18th ACM Conference on Computer Supported Cooperative Work & Social Computing, CSCW’ 15, 903–916, https://doi.org/10.1145/2675133.2675221 (Association for Computing Machinery, 2015).

  • Mark, G., Iqbal, S. T., Czerwinski, M. & Johns, P. Bored mondays and focused afternoons: the rhythm of attention and online activity in the workplace. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI’ 14, 3025–3034, https://doi.org/10.1145/2556288.2557204 (Association for Computing Machinery, 2014).

  • Pielot, M., Dingler, T., Pedro, J. S. & Oliver, N. When attention is not scarce – detecting boredom from mobile phone usage. In Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, UbiComp’ 15, 825–836, https://doi.org/10.1145/2750858.2804252 (Association for Computing Machinery, 2015).

  • Choi, W., Park, S., Kim, D., Lim, Y.-K. & Lee, U. Multi-stage receptivity model for mobile just-in-time health intervention. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 3, https://doi.org/10.1145/3328910 (2019).

  • Turner, L. D., Allen, S. M. & Whitaker, R. M. Interruptibility prediction for ubiquitous systems: conventions and new directions from a growing field. In Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, UbiComp’ 15, 801–812, https://doi.org/10.1145/2750858.2807514 (Association for Computing Machinery, 2015).

  • Mark, G., Gudith, D. & Klocke, U. The cost of interrupted work: more speed and stress. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI’ 08, 107–110, https://doi.org/10.1145/1357054.1357072 (Association for Computing Machinery, 2008).

    Read More   'Potentially hazardous' asteroid twice the size of the World Trade Center will shoot past Earth tonight
  • Bailey, B. P. & Konstan, J. A. On the need for attention-aware systems: measuring effects of interruption on task performance, error rate, and affective state. Comput. Hum. Behav. 22, 685–708, https://doi.org/10.1016/j.chb.2005.12.009 (2006).

    Article 

    Google Scholar
     

  • Bailey, B. P., Konstan, J. A. & Carlis, J. V. The effects of interruptions on task performance, annoyance, and anxiety in the user interface. IFIP TC13 International Conference on Human-Computer Interaction 1, 593–601 (2001).

    CAS 

    Google Scholar
     

  • Park, S.-J., Choi, H.-R., Choi, J.-H., Kim, K.-W. & Hong, J.-P. Reliability and validity of the korean version of the patient health questionnaire-9 (phq-9). Anxiety mood 6, 119–124,https://koreascience.kr/article/JAKO201025247234261.page (2010).

  • Kroenke, K., Spitzer, R. L. & Williams, J. B. W. The PHQ-9: validity of a brief depression severity measure. J. Gen. Intern. Medicine 16, 606–613, https://doi.org/10.1046/j.1525-1497.2001.016009606.x (2001).

    Article 
    CAS 

    Google Scholar
     

  • Lee, J. et al. The reliability and validity studies of the korean version of the perceived stress scale. Korean J. Psychosom. Medicine 20, 127–134, https://www.koreamed.org/SearchBasic.php?RID=1985570 (2012).

  • Goldberg, D. P. & Hillier, V. F. A scaled version of the general health questionnaire. Psychol. Medicine 9, 139–145, https://doi.org/10.1017/S0033291700021644 (1979).

    Article 
    CAS 

    Google Scholar
     

  • Park, J.-I., Kim, Y. J. & Cho, M. J. Factor structure of the 12-item general health questionnaire in the korean general adult population. J. Korean Neuropsychiatr. Assoc. 51, 178–184, https://doi.org/10.4306/jknpa.2012.51.4.178 (2012).

    Article 

    Google Scholar
     

  • Kang, S. et al. K-emophone, a mobile and wearable dataset with in-situ emotion, stress, and attention labels. Zenodo https://doi.org/10.5281/zenodo.7606611 (2022).

  • Bakdash, J. Z. & Marusich, L. R. Repeated measures correlation. Front. Psychol. 8, https://doi.org/10.3389/fpsyg.2017.00456 (2017).

  • Hastie, T., Tibshirani, R. & Friedman, J. The elements of statistical learning: data mining, inference, and prediction, vol. 2 (Springer Science & Business Media, 2009).

  • Hughes, G. F. On the mean accuracy of statistical pattern recognizers. IEEE Transactions on Inf. Theory 14, 55–63, https://doi.org/10.1109/TIT.1968.1054102 (1968).

    Article 

    Google Scholar
     

  • Breiman, L. Random forests. Mach. Learn. 45, 5–32, https://doi.org/10.1023/A:1010933404324 (2001).

    Article 
    MATH 

    Google Scholar
     

  • Chen, T. & Guestrin, C. Xgboost: a scalable tree boosting system. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD’ 16, 785–794, https://doi.org/10.1145/2939672.2939785 (Association for Computing Machinery, 2016).

  • Pielot, M. et al. Beyond interruptibility: predicting opportune moments to engage mobile phone users. Proc. ACM on Interactive, Mobile, Wearable Ubiquitous Technol. 1, https://doi.org/10.1145/3130956 (2017).

  • Sano, A., Johns, P. & Czerwinski, M. Designing opportune stress intervention delivery timing using multi-modal data. In 2017 Seventh International Conference on Affective Computing and Intelligent Interaction, ACII, 346–353, https://doi.org/10.1109/acii.2017.8273623 (IEEE, 2017).

  • Kunzler, F. et al. Exploring the state-of-receptivity for mhealth interventions. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 3, https://doi.org/10.1145/3369805 (2020).

  • Elhai, J. D. et al. Depression and emotion regulation predict objective smartphone use measured over one week. Pers. Individ. Differ. 133, 21–28, https://doi.org/10.1016/j.paid.2017.04.051 (2018).

    Article 

    Google Scholar
     

  • Yuan, F., Gao, X. & Lindqvist, J. How busy are you? predicting the interruptibility intensity of mobile users. In Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems, CHI’ 17, 5346–5360, https://doi.org/10.1145/3025453.3025946 (Association for Computing Machinery, 2017).

  • Sano, A. et al. Recognizing academic performance, sleep quality, stress level, and mental health using personality traits, wearable sensors and mobile phones. In 2015 IEEE 12th International Conference on Wearable and Implantable Body Sensor Networks (BSN), 1–6, https://doi.org/10.1109/bsn.2015.7299420 (IEEE, 2015).

  • Kang, S., Park, C. Y., Kim, A., Cha, N. & Lee, U. Understanding emotion changes in mobile experience sampling. In CHI Conference on Human Factors in Computing Systems, https://doi.org/10.1145/3491102.3501944 (Association for Computing Machinery, 2022).

  • Ekman, P. An argument for basic emotions. Cogn. Emot. 6, 169–200, https://doi.org/10.1080/02699939208411068 (1992).

    Article 

    Google Scholar
     

  • Bradley, M. M. & Lang, P. J. Measuring emotion: the self-assessment manikin and the semantic differential. J. Behav. Ther. Exp. Psychiatry 25, 49–59, https://doi.org/10.1016/0005-7916(94)90063-9 (1994).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pollak, J. P., Adams, P. & Gay, G. PAM: a photographic affect meter for frequent, in situ measurement of affect. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI’ 11, 725–734, https://doi.org/10.1145/1978942.1979047 (Association for Computing Machinery, 2011).

  • Russell, D. W. UCLA loneliness scale (version 3): reliability, validity, and factor structure. J. Pers. Assess. 66, 20–40, https://doi.org/10.1207/s15327752jpa6601_2 (1996).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Diener, E. et al. New well-being measures: short scales to assess flourishing and positive and negative feelings. Soc. Indic. Res. 97, 143–156, https://doi.org/10.1007/s11205-009-9493-y (2010).

    Read More   Majesty or steadiness: researchers identify two tiger personality traits

    Article 

    Google Scholar
     

  • Bogomolov, A., Lepri, B., Ferron, M., Pianesi, F. & Pentland, A. Daily stress recognition from mobile phone data, weather conditions and individual traits. In Proceedings of the 22nd ACM international conference on Multimedia, MM’ 14, 477–486, https://doi.org/10.1145/2647868.2654933 (Association for Computing Machinery, 2014).

  • Plarre, K. et al. Continuous inference of psychological stress from sensory measurements collected in the natural environment. Proceedings of 10th ACM/IEEE Internatinal Conference on Information Processing in Sensor Networks, IPSN’ 11, 97–108 (2011).


    Google Scholar
     

  • Exler, A., Schankin, A., Klebsattel, C. & Beigl, M. A wearable system for mood assessment considering smartphone features and data from mobile ECGs. In Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing: Adjunct, UbiComp’ 16, 1153–1161, https://doi.org/10.1145/2968219.2968302 (Association for Computing Machinery, 2016).

  • Wilhelm, P. & Schoebi, D. Assessing mood in daily life: structural validity, sensitivity to change, and reliability of a short-scale to measure three basic dimensions of mood. Eur. J. Psychol. Assess. 23, 258–267, https://doi.org/10.1027/1015-5759.23.4.258 (2007).

    Article 

    Google Scholar
     

  • Watson, D., Clark, L. A. & Tellegen, A. Development and validation of brief measures of positive and negative affect: the panas scales. J. personality social psychology 54, 1063–1070, https://doi.org/10.1037/0022-3514.54.6.1063 (1988).

    Article 
    CAS 

    Google Scholar
     

  • Helton, W. S. & Naswall, K. Short stress state questionnaire: factor structure and state change assessment. Eur. J. Psychol. Assess. 31, 20–30, https://doi.org/10.1027/1015-5759/a000200 (2015).

    Article 

    Google Scholar
     

  • Spielberger, C., Gorsuch, R., Lushene, R., Vagg, P. & Jacobs, G. Manual for the state-trait anxiety inventory, vol. 4 (Palo Alto, CA: Consulting Psychologists Press, 1983).

  • Buysse, D. J., Reynolds, C. F., Monk, T. H., Berman, S. R. & Kupfer, D. J. The pittsburgh sleep quality index: a new instrument for psychiatric practice and research. Psychiatry Res. 28, 193–213, https://doi.org/10.1016/0165-1781(89)90047-4 (1989).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Davey, H. M., Barratt, A. L., Butow, P. N. & Deeks, J. J. A one-item question with a likert or visual analog scale adequately measured current anxiety. J. Clin. Epidemiol. 60, 356–360, https://doi.org/10.1016/j.jclinepi.2006.07.015 (2007).

    Article 
    PubMed 

    Google Scholar
     

  • Williams, L. J. & Anderson, S. E. Job satisfaction and organizational commitment as predictors of organizational citizenship and in-role behaviors. J. Manag. 17, 601–617, https://doi.org/10.1177/014920639101700305 (1991).

    Article 

    Google Scholar
     

  • Griffin, M. A., Neal, A. & Parker, S. K. A new model of work role performance: positive behavior in uncertain and interdependent contexts. Acad. Manag. J. 50, 327–347, https://doi.org/10.5465/amj.2007.24634438 (2007).

    Article 

    Google Scholar
     

  • Fox, S., Spector, P. E., Goh, A., Bruursema, K. & Kessler, S. R. The deviant citizen: measuring potential positive relations between counterproductive work behaviour and organizational citizenship behaviour. J. Occup. Organ. Psychol. 85, 199–220, https://doi.org/10.1111/j.2044-8325.2011.02032.x (2012).

    Article 

    Google Scholar
     

  • Bennett, R. J. & Robinson, S. L. Development of a measure of workplace deviance. J. applied psychology 85, 349, https://doi.org/10.1037/0021-9010.85.3.349 (2000).

    Article 
    CAS 

    Google Scholar
     

  • Saunders, J. B., Aasland, O. G., Babor, T. F., Fuente, J. R. D. L. & Grant, M. Development of the alcohol use disorders identification test (audit): who collaborative project on early detection of persons with harmful alcohol consumption-ii. Addict. 88, 791–804, https://doi.org/10.1111/j.1360-0443.1993.tb02093.x (1993).

    Article 
    CAS 

    Google Scholar
     

  • Craig, C. L. et al. International physical activity questionnaire: 12-country reliability and validity. Medicine & Sci. Sports & Exerc. 35, 1381–1395, https://doi.org/10.1249/01.MSS.0000078924.61453.FB (2003).

    Article 

    Google Scholar
     

  • Palipudi, K. M. et al. Methodology of the global adult tobacco survey — 2008–2010. Glob. Heal. Promot. 23, 3–23, https://doi.org/10.1177/1757975913499800 (2016).

    Article 

    Google Scholar
     

  • Kaya, F., Delen, E. & Bulut, O. Test review: shipley-2 manual. J. Psychoeduc. Assess. 30, 593–597, https://doi.org/10.1177/0734282912440852 (2012).

    Article 

    Google Scholar
     

  • Ocumpaugh, J., Baker, R. S. & Rodrigo, M. M. T. Baker rodrigo ocumpaugh monitoring protocol (BROMP) 2.0 technical and training manual. Tech. Rep., New York, NY and Manila, Philippines: Teachers College, Columbia University and Ateneo Laboratory for the Learning Sciences (2015).

  • Batista, G. E., Wang, X. & Keogh, E. J. A complexity-invariant distance measure for time series. In Proceedings of the 2011 SIAM International Conference on Data Mining, 699–710, https://doi.org/10.1137/1.9781611972818.60. SIAM (Society for Industrial and Applied Mathematics, 2011).



  • READ SOURCE

    This website uses cookies. By continuing to use this site, you accept our use of cookies.